Robotic walking in natural terrain Gait planning and behavior-based control for statically-stable walking robots
نویسنده
چکیده
A substantial portion of the Earth is inaccessible to any sort of wheeled mechanism— natural obstacles like large rocks, loose soil, deep ravines, and steep slopes conspire to render rolling locomotion ineffective. Hills, mountains, shores, seabeds, as well as the moon and other planets present similar terrain challenges. In many of these natural terrains, legs are well-suited. They can avoid small obstacles by making discrete contacts and passing up undesirable footholds. Legged mechanisms can climb over obstacles and step across ditches, surmounting terrain discontinuities of body-scale while staying level and stable. To achieve their potential, legged robots must coordinate their leg motions to climb over, step across and walk in natural terrain. These coordinated motions, which support and propel the robot, are called a gait. This thesis develops a new method of gait planning and control that enables statically-stable walking robots to produce a gait that is robust and productive in natural terrain. Independent task-achieving processes, called gait behaviors, establish a nominal gait, adapt it to the terrain, and react to disturbances like bumps and slips. Gait controlled in this way enabled the robot Dante II to walk autonomously in natural terrain, including the volcanic crater of Mount Spurr. This method extends to other walking robots as demonstrated by a generalized hexapod that performs the variety of gaits seen in sixlegged insects, as well as aperiodic free gaits. The ability to change gait patterns on-thefly with continuous, stable motion is a new development that enables robots to behave more like animals in adapting their gait to terrain. Finally, this thesis describes why walking robots need predictive plans as well as reflexive behaviors to walk effectively in the real world. It presents a method of guiding the behavior of a walking robot by planning distinct attributes of the desired gait. This partitioning of gait planning avoids the complexity of high degree-of-freedom motion planning. The ability to plan and foresee changes in gait improves performance while maintaining robust safety and stability.
منابع مشابه
Dynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملA Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملAccurate tracking of legged robots on natural terrain
Statically stable walking locomotion research has focused mainly on robot design and gait generation. However, there is a need to expand robots’ capabilities so that walking machines can accomplish the kinds of real tasks for which they are eminently suited. Many such tasks demand trajectory tracking, but researchers have traditionally ignored this subject. This article focuses on the tracking ...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملA Strategy for Quadruped Walking on Uneven Terrain
We describe the design and construction of a quadruped robot which walks on uneven terrain. A control system which produces a statically stable gait has been implemented; results showing a straight and turning gait are presented. The control of quadruped robots poses interesting challenges due to a small stability margin (when compared to hexapods for example). For this reason most implemented ...
متن کامل